I /

INTRODUCTION TO PYTHON

http://www.liacs.leidenuniv.nl/~nijssensgr/CI/

General-purpose
Interpreted
High-level

Readable code

Open source (CPython)

www.python.org

Python History

Created and maintained by Guido van Rossum at the
CWI (Amsterdam, 1980s), at Google (California) and
Dropbox (California, now)

Python 2.x is most common

Python 3.x (released 2008) is the current standard

® not fully compatible with Python 2.x

We will use what works best for us

Hello World

No header file, no main, no opening bracket

No bracket

Python 2.x

Hello World

No header file, no main, no opening bracket

Python 3.x

Variables

Variables have types, but the type depends on what
you assign to the variable

Variables are not declared

a 0 a, b =0, “text”
b “text” b, a = a, b
print a, b printTa

A

adds space as well s1multaneous assignment
allowed

If-statements

e C++ comparison

Indentation
indicates
how long
the block
continues;
nof ..}

No

: indicates start of

block

-

"7ero”
elif a ==

//’print “One”
else:

print “Other”

else: if can be shortened

While-statement

a =20
Indentation while a < 10:

indicates %Pr int a
how long a += 1
the block T

continues;
no{..} a++ not supported

Functions

Defines function,
no return type No parameter type

v

Indentation def f(1):
indicates =< return i + 1

how long
the block print £(1)
continues;
no{ ...}

Classes

class Dimension:
width = 10 = Default value

height = 10 for variable;
evaluated

d = Dimension () once

»

Create instance by class and ()
(no new statement)

prints 1

Reference semantics

“all variables
H »
class Dimension: pass are actually pointers

def f(dimension,val): objects are deleted

dimension.width = val (garbage collection)
when there is no

dl = Dimension () pointer to them.
£(d1,10)

2 =-=d1< dapointstothe
f(d2,20) same object as d1

print dl.width, d2.width <«

—— prints “20 20"
(like Java)

Class constructors /

methods

class Dimension:
def init (self, w, h):

self.widEE W"‘\\\\\\\\\\\\\
= h

self.height
-
def write (self):

print self.width, self.height

d
d.write

Dimension (3, 3

()

)

«)
_constructor 1s

always named
i

— a “this” pointer
always needs to
be added
(and is called “self”)

nothing there

Classes: None

Instead of NULL -

None
/\

None None

Operators

Mathematical'

% , %, &, |, ~ rasin C++

/ : division, always produces float

// : division, always produces integer
: power-of

Logical:

and : instead of &&
or . instead of ||
not : instead of !

if a > 3 and b > 3:
print a, b

Arithmetic & Boolean Types

Basic mathematical type names are: float (64 bit), int
(32 bit), long (unlimited), complex (float real and
imaginary)

® conversions: 3
float (a)

Boolean: bool

® however: False and True are written with capitals!

Lists

Python has a built-in type for lists, and a syntax for
constructing lists

Multiple
[10, 20, 30] types can be

[10, “something”, 30] - . R

list

Lists are like arrays, but can do more

= [10, 20, 30]
print a[0]= Prints “10”
print a[-1% Prints “30”

(as also seen in logical and functional programming languages)

Lists

® Slices

Prints “[10, 20]”

@ Length of a list

Lists

Concatenation

a = [10, 20, 30]
b =a+ [40, 50]

Multiplication

a = [10, 20, 30] * 3 -

[10, 20, 30,
10, 20, 30,

One can test for list membership

= [10, 20, 30]
if 30 in a: print “in”
if 30 not in a: print “out”

10, 20, 30]

(Be careful: uses
linear search)

Strings

Strings are also lists

a = "text”
print a[0:3], a*3

Conversions to strings need to be done explicitly

b = “Nummer “ + str(a)

Many convenience functions for strings, eg.

print “--".join([“one”,”"two”,”three”])

v

prints “one--two--three” (More later)

Lists and for-loops

Important functions that return lists: (Python 2.x)

range(x) — returns [0,1,2,...,x-1]
range(x,y) — returns [x,x+1,...,y-1]

For loops are defined for lists (and iterators)

Prints:
o)

for 1 in range(4):
print i =

1
2
3

Sets

Possible disadvantages of lists:
® membership tests: linear search
® elements can occur multiple times

[f problematic, use sets

~— use instead of
A= (2 3,33« | { } =l

print a - prints “2 3"

a.add (1)
print a

a = set([10,20,30])
print a

Tuples are unmutable lists

® unmutable: the list cannot change (i.e., we cannot add

or remove a value in the list)

a= (1, 2) <« use ()insteadof []

print a

a=1, 2 -
print a

also creates a tuple

~ “unpack” a tuple

e
a, b=1, 2

a,b=b,a4////

print a, b

creates tuple for (b, a),
unpacks thisina, b

Dictionaries

Dictionaries are like sets, but associate a value to each
key in a set

“anna” : 1, “bill”

for i in a: . dlnounces Value
print i, a[i]

>

Prints:

bill 2

anna 1

- only keys are retrieved in for

- array-like notation to retrieve value

Dictionaries

Updating dictionaries

“anna” : 1, “bill” : 2 } adds
a[“christine”] = 3 «——— ——
a.update ({ “donna” : 4, "“eric” : 5 })

christine

a[“eric”] = 6

a.pop (”don;;:\;\\\\\\\\

'\ Change value of “eric”

Remove “donna”

Reading files

f = open (“test.txt”) open for reading

for line in f: . : .
print line —— retrieve line-per-line

f.close () \ as if from a list

Note: 1ine includes the end-of-line \n; after
this \n, print by default puts another \n

Reading files

= open (“test.txt” — Read one line
f.readline ()-4/’”////////////////

for line in f:

print line.rstrip () = Remove white-

f.close ()

space on the

line.lstrip ()

line.strip ()

line.split ()

right (including
\n)

Remove whitespace on the left
Remove whitespace on the left and right

Splits line in words based on whitespace

Writing files

open (“test2.txt”, “w”)< — open for writing

[”1\n","2\n","3\n"] . : .
.writelines (a) R to write a list, it must

.write (“something”) consists of strings;
.close () add \n for newlines

Modules & Pickle

use the pickle

import pickle =
a=[T[11 2, 31,1 2, 3, 4
lldump",

f open (“w" o)

]

]

pickle.dump (a, f) =

import pickle

f = open (“dump”)

print pickle.load (f)

library

writes any standard
_ Python data

structure to disk

Modules & Pickle

import one

from pickle import dump =
a=[T[11 2, 31,1 2, 3, 4

Open (1 dump {4 ’ llw")

]

]

dump (a, f) =

function

no need to
add library

name

from pickle import * «
f = open (“dump”)

print load (f)

import all
functions

Creating Modules

mymodule.py

def increase (X):
return x + 1

Looks in system
path and local
print mymodule.increase (2) path for mymodule.py

import mymodule -

Command line

import sys

print sys.argv

|

Contains a list of all command line arguments

or use the optparse module...

Other standard modules

® math

® random
®gzip

® zipfile
@ csv

® time

® optparse

® 9yson
® xml
. C Tl Yol)

Exceptions

def search (1, y):
for x in 1l:
if x ==

Raises an exception

raise <

try: =

search ([2, 3, 1, 4], 3)

— (Catch exceptions

except: =
print “found”

(note: if 3 in [2,3,1,4]: print
would have been shorter)

Only executed if
exception raised

“found”

Inherit from Exception class

Exceptions

class myException(Exception): pass = Empty class

def search (1, vy):
for x in 1:
if x == y: | Raises a specific
raise myException(y) exception

def £ ():
try:
search ([2, 3, 1, 4], 5)
except myException as value: « ——— (Catch SpeCiﬁC
print value exception
else:
print “Not found”
return
finally:
print “Finished”

Exceptions

Problem: opens
file but does
not close it

Exceptions

print line,

for line in open("myfile.txt"):

with open("myfile.txt") as f:
for line in f:
print line,

Problem: opens
file but does

not close it

File objects have __enter__and
__exit__ functions, which are automatically
called when the with statement is used.

Functions as Objects

@ Python functions can be stored in variables

Function Closures

def add(i):
def sum(j):

return i + j

return sum\

addone = add(1)

print addone(2)

value of i at the

moment g is returned
is stored together
with gin a

Return function
with one argument

Generators: yield

if a function contains a yield statement, it can't have a
return statement — when called, the function always
immediately returns a generator object for itself

each time the next () operator is called, the function
continues to be executed where it left off

def generator (1):
print i
yield
print i+l

a = generator (1)
a.next ()
a.next ()

Generators: yield

® a yield statement can also “return” a value

Generators & for loops

for loops also apply to generators

def till (n):
i=0
while i < n:
yield 1
i+=1

for i in till (10):
print i

in Python 2.x, xrange (i) is a generator (range (1) returns a list)

in Python 3.x range (i) isa generator (1ist (range (i)) creates
a list by executing the generator)

List comprehension

a = [2*1 for 1 in xrange(1l0) if i1 != 2]

print a

!

+ '

source of elements condition(s) on elements

-
{i e {0,1,---}]|7#£2}

Close to mathematical notation!

List comprehension

List comprehension

Map

@ Still long:

® Shorter:

apply £ on each element in the list

Reduce
Still long:

f(i,J): return i+j
range(10)
0

for i in a: b = £(1i,b)

Shorter:

def f(i,j): return i+j
a = range(10)
b = reduce(f,a)

Note: Google's map/reduce framework based on combining
on a large scale map & reduce to perform calculations

Lambda functions

Inline definition of functions without name

range(10)
reduce(lambda i

/

lambda is a keyword; return

: ° arameters of the
function without p of the

function :
name function

Only useful for functions that can be written with one
expression

Filter

Create sublist of a list based on boolean test

list empty? closures work

def quicﬁégféilist):

if list:
return \
quicksort (filter(lambda x:x < list[0], list[1l:]
+ [list[0]] + \
quicksort (filter(lambda x:x > list[0], list[1l:]
else:
return []

print quicksort([5,1,3,2,4])

))\

))

Math-like notation

Sum

print sum([1**2 for in xrange(1l0)])

Max

print max([1i**2 for in xrange(10)])

And?

def land(1l): return reduce(lambda x,y: x and y, 1)
print land([True]*5)

Named Functions Arguments

Named Functions Arguments

class Student:
def init (self, name, grade, age):
self.name = name
self.grade = grade
self.age = age

def repr (self):
return repr((self.name, self.grade, self.age))

student objects = |
Student('john', 'A', 15),
Student('jane', 'B', 12),
Student('dave', 'B', 10),
]
print sorted(student_objects, key=lambda student: student.age)

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 53

